1,246 research outputs found

    Variations of total ozone in the north polar region as seen by TOMS

    Get PDF
    Data from the TOMS instrument has been used to follow the course of development of the Antarctic ozone springtime minimum since 1979. Addressed is the question of possible north polar region changes which might be deduced from the nine years of TOMS measurements of total ozone. Total ozone is a much more variable quantity in the Northern Hemisphere than in the Southern Hemisphere. This makes the search for trends more difficult and the interpretation of results more uncertain. The 9-yr time series of TOMS data at high latitudes in the Northern Hemisphere is examined. Because the TOMS measurements have drifted by 3 to 4 percent with respect to closely collocated Dobson measurements, it was chosen in this study to adopt the Dobson normalization and adjust the TOMS measurements accordingly. The difference between the last two years (1986 and 1987) of the TOMS record, and the first two years of the record (1979 and 1980) are shown. The difference in percent is given as a function of latitude and time of year. The Antarctic springtime decrease is clearly seen as well as a smaller change which extends to about 50 degrees south latitude at all seasons. Changes in the Northern Hemisphere are less dramatic and are concentrated near the polar night where solar zenith angles are very large. These data are now being examined in more detail and updated results will be presented at the Workshop

    Contrasting controls on the phosphorus concentration of suspended particulate matter under baseflow and storm event conditions in agricultural headwater streams

    Get PDF
    Whilst the processes involved in the cycling of dissolved phosphorus (P) in rivers have been extensively studied, less is known about the mechanisms controlling particulate P concentrations during small and large flows. This deficiency is addressed through an analysis of large numbers of suspended particulate matter (SPM) samples collected under baseflow (n = 222) and storm event (n = 721) conditions over a 23-month period across three agricultural headwater catchments of the River Wensum, UK. Relationships between clay mineral and metal oxyhydroxide associated elements were assessed and multiple linear regression models for the prediction of SPM P concentration under baseflow and storm event conditions were formulated. These models, which explained 71–96% of the variation in SPM P concentration, revealed a pronounced shift in P association from iron (Fe) dominated during baseflow conditions to particulate organic carbon (POC) dominated during storm events. It is hypothesised this pronounced transition in P control mechanism, which is consistent across the three study catchments, is driven by changes in SPM source area under differing hydrological conditions. In particular, changes in SPM Fe–P ratios between small and large flows suggest there are three distinct sources of SPM Fe; surface soils, subsurface sediments and streambed iron sulphide. Further examination of weekly baseflow data also revealed seasonality in the Fe–P and aluminium oxalate–dithionate (Alox–Aldi) ratios of SPM, indicating temporal variability in sediment P sorption capacity. The results presented here significantly enhance our understanding of SPM P associations with soil derived organic and inorganic fractions under different flow regimes and has implications for the mitigation of P originating from different sources in agricultural catchments

    A General Label Search to Investigate Classical Graph Search Algorithms

    Get PDF
    International audienceMany graph search algorithms use a labeling of the vertices to compute an ordering of the vertices. We generalize this idea by devising a general vertex labeling algorithmic process called General Label Search (GLS), which uses a labeling structure which, when specified, defines specific algorithms. We characterize the vertex orderings computable by the basic types of searches in terms of properties of their associated labeling structures. We then consider performing graph searches in the complement without computing it, and provide characterizations for some searches, but show that for some searches such as the basic Depth-First Search, no algorithm of the GLS family can exactly find all the orderings of the complement. Finally, we present some implementations and complexity results of GLS on a graph and on its complement

    Maximal Label Search Algorithms to Compute Perfect and Minimal Elimination Orderings

    Get PDF
    International audienceMany graph search algorithms use a vertex labeling to compute an ordering of the vertices. We examine such algorithms which compute a peo (perfect elimination ordering) of a chordal graph, and corresponding algorithms which compute an meo (minimal elimination ordering) of a non-chordal graph, an ordering used to compute a minimal triangulation of the input graph. \par We express all known peo-computing search algorithms as instances of a generic algorithm called MLS (Maximal Label Search) and generalize Algorithm MLS into CompMLS, which can compute any peo. \par We then extend these algorithms to versions which compute an meo, and likewise generalize all known meo-computing search algorithms. We show that not all minimal triangulations can be computed by such a graph search, and, more surprisingly, that all these search algorithms compute the same set of minimal triangulations, even though the computed meos are different. \par Finally, we present a complexity analysis of these algorithms

    Need or opportunity? A study of innovations in equids

    Get PDF
    Funding: The article processing charge was funded by the Baden-Württemberg Ministry of Science, Research and Culture and the Nürtingen-Geislingen University, in the funding programme Open Access Publishing.Debate persists over whether animals develop innovative solutions primarily in response to needs or conversely whether they innovate more when basic needs are covered and opportunity to develop novel behaviour is offered. We sourced 746 cases of “unusual” behaviour in equids by contacting equid owners and caretakers directly and via a website (https://innovative-behaviour.org), and by searching the internet platforms YouTube and Facebook for videos. The study investigated whether differences in need or opportunity for innovation were reflected in the numbers of different types of innovations and in the frequencies of repeating a once-innovative behaviour (i) with respect to the equids’ sex, age, and breed type, (ii) across behavioural categories, and whether (iii) they were affected by the equids’ management (single vs group housing, access to roughage feed, access to pasture, and social contact). We found that the numbers of different types of innovation and the frequency of displaying specific innovations were not affected by individual characteristics (sex, age, breed or equid species). Few types of innovation in escape and foraging contexts were observed, whilst the comfort, play, and social contexts elicited the greatest variety of innovations. We also found higher numbers of different types of innovations in horses kept in groups rather than in individual housing, and with unlimited rather than with restricted access to pasture and roughage. Equids in permanent social contact performed high rates of once-innovative behaviour. We suggest that equids produce goal-directed innovations and repeat the behaviour at high frequency in response to urgent needs for food and free movement or when kept in conditions with social conflict. However, equids devise the greatest variety of innovations when opportunity to play and to develop comfort behaviour arises and when kept in good conditions.Publisher PDFPeer reviewe

    Die sensorische Lateralität als Indikator für emotionale und kognitive Reaktionen auf Umweltreize beim Tier. The use of sensory laterality for indicating emotional and cognitive reactions on environmental stimuli in animals

    Get PDF
    Zusammenfassung Viele Tiere zeigen eine eindeutige sensorische Lateralität, sprich sie benutzen bevorzugt ein Auge, ein Ohr, oder eine Nüster zur Aufnahme von Sinneseindrücken. Dies korreliert in den meisten Fällen nicht mit der motorischen Lateralität, sondern wird viel mehr durch die einseitige Verarbeitung von Informationen in den jeweiligen Gehirnhemisphären bedingt. So werden emotionale Reaktionen von der rechten, reaktiven Gehirnhemisphäre und rationale Reaktionen von der linken, kognitiven Gehirnhemisphäre gesteuert. Da die Gehirnhälften zum Großen Teil mit den kontrolateralen Sinnesorganen verbunden sind lässt die Seite mit welcher Sinneseindrücke aufgenommen werden Schlüsse auf deren Informationsgehalt zu. So zeigen Tiere bei linksseitiger Aufnahme von Sinneseindrücken vermehrt reaktive, emotionalen Reaktionen, wie etwa bei Angst oder freudige Erregung, und bei rechtsseitig aufgenommene Sinneseindrücke eher rationales, gesteuertes Verhalten. Zudem verstärkt sich die sensorische Lateralität wenn Tiere Stress erfahren, sprich wenn sie wiederholt mit Situationen anthropogenen oder natürlichen Ursprungs konfrontiert werden denen sie nicht gewachsen sind, wie etwa bei unpassenden Haltungs- und Trainingsbedingungen, oder bei unausweichlichem Raubtierdruck und sozialer Konkurrenz. Eine stark ausgeprägte, zunehmende sensorische Lateralität kann daher auf ein beeinträchtigtes Wohlergehen der Tiere hinweisen. Summary Many animals are lateralized when using sensory organs such as the eyes, ears or nostrils. Sensory laterality is not, as previously believed, caused by adjustment to motor laterality, but rather by one sided information processing in the particular brain hemispheres. While the right hemisphere predominantly analyses emotional information, the left hemisphere governs controlled rational, cognitive decisions. Since the brain hemispheres are largely connected with contralateral sensory organs, it is possible to infer how the information may be being interpreted by the side of preferred eye, ear or nostril used. The left eye usually dominates in emotional situations, i.e. fear or positive excitement, and the right eye in rational situations. Moreover, laterality increases when animals are stressed, e.g. when animals are confronted with anthropogenic or natural factors they can not handle, such as unsuitable housing or training conditions or unavoidable predation pressure and social competition. A strong or increasing laterality could therefore potentially indicate welfare issues

    Medical education in Korea from a German student’s perspective

    Get PDF
    • …
    corecore